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I. INTRODUCTION

In order to enable robots to perform tasks in indoor
environments such as the kitchen, we require accurate pose
estimation and tracking of the full scene. Such a scene is a
large scale articulated model composed of multiple objects
with articulations, including cabinets, drawers and appli-
ances. To perform task informed grasping and manipulation,
the full 6D pose estimate of the objects in the scene is
required. The availability of depth sensors provides sensing
capability in the 3D domain and motivates the extension of
vision based pose estimation approaches [1]. This domain
presents many technical challenges, including occlusions,
sensor noise, and high computational complexity due to the
high dimensional continuous pose space.

Probabilistic modeling has been widely applied to object
tracking. Wuthrich et. al. [2] propose a probabilistic tech-
nique for tracking of objects being manipulated by a human
or robot with known geometries using a particle filter. The
particle filter models occlusions alongside the observation
and process models. The framework was extended to track a
manipulator end-effector [3]. In [4], Schmidt et al. introduce
a general framework for tracking articulated objects with
known structure using an extended Kalman filter, where the
observation model employs the signed distance function. It
was extended to include physics based constraints on the
objects [5]. These tracking frameworks are either initialized
to objects’ ground truth poses or informed by joint encoder
readings in the case of articulated objects. Here, we aim to
develop a unified framework that performs pose estimation
followed by a pose tracking stage without any initialization
and using only point cloud data. Full scene pose estimation
and tracking of known objects has been studied in the context
of SLAM by Salas-Moreno et al. [6]. However, this work
assumes objects to be static while the camera is in motion.
Here, we aim to be able to work with a mobile manipulation
platform where the change in the observation can be due to
articulated objects as well as to the robot motion.

Nonparametric belief propagation has been effectively
used in applications such as human pose estimation [1]
and hand tracking [7] by modeling the graph as a particle
network. In order to viably pursue NBP for robotic problems,
such as scene perception, the computational efficiency of
NBP methods needs to be revisited. In this regard, our pre-
viously devised Pull Message Passing Nonparametric Belief
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Propagation (PMPNBP) algorithm [8] is computationally ef-
ficient and has been shown to satisfy the computational needs
of scene perception problems. In [8] we show promising
results in pose estimation of articulated objects under severe
occlusions. PMPNBP takes as input a geometrical model
with articulation constraints and a 3D point cloud observation
and outputs belief over the object-part poses iteratively. By
factoring the state of the articulated object into its individual
parts, PMPNBP is able to avoid local minima as compared
to standard particle filter based approaches.

In this work, we propose to extend our previous work [8]
to fully estimate and track large scale articulated models. We
believe our factored approach is more suitable for large scale
scenes that are partially observed due to occlusions by other
objects and agents, and due to the limited field of view of
an on-board depth sensor.

The proposed extension will have two stages: a pose
estimation stage (global localization) followed by a pose
tracking stage (local localization). The problem is formulated
as a Markov Random Field (MRF) similar to the PMPNBP
method, where unary and pairwise potential functions help
to iteratively pass informative messages between the hidden
nodes to infer the state that most likely explains a given
observation. The unary potential of the graphical model in
PMPNBP models how well a pose explains the observation.
In the proposed extension, this unary potential function
should cater to the needs of the large scale observations
with varying sensor noise and occlusions, and accommodate
partial and noisy observations. The pairwise potential of
PMPNBP models how compatible a pair of rigid body poses
are, given their articulation constraints. In the proposed
extension, modeling this function specific to pose estimation
and pose tracking stages would benefit both the inference
and its computational needs. In this ongoing work, we plan
to devise potential functions suitable for the inference and
its computational needs.

II. TRACKING WITH BELIEF PROPAGATION

Given a large scale articulated model (kitchen model)
O, its geometry and Unified Robot Description Format
(URDF) defining its articulation, we wish to estimate the
6 DoF object pose Xs of each of its rigid parts. In the
PMPNBP formulation, each articulated object is represented
as a Markov Random Field (MRF) G = (V,E), where the
graph G has nodes V and edges E. The graph is made
up of hidden variables X representing the object poses
and observed variables Y representing sensor observations.
The pose estimate is obtained through inference, where Xi



Fig. 1: Illustration of the expected behavior of the pose estimation and tracking framework for a kitchen setting. The pose estimation stage localizes the
kitchen model in the 3D point cloud data. The pose tracking stage tracks the changes in the pose under occlusion (human opening a cabinet) over a stream
of 3D point cloud data.

maximizes the joint probability of the observed and hidden
variables:

p(X,Y ) =
1

Z

∏
(i,j)∈E

ψi,j(Xi, Xj)
∏
s∈V

φi(Xi, Yi) (1)

where ψi,j(Xi, Xj) is the pairwise potential between nodes
Xi and Xj , φi(Xi, Yi) is the unary potential between the
hidden node Xi and the observed node Yi, and Z is a
normalizing factor. PMPNBP performs inference through
pull message passing in the graph to obtain the estimated
pose X̂i of each part. Details on this factorization, the
PMPNBP algorithm and its benefits can be found in [8].
Motivated by [1], we develop a tracking stage as an extension
to the pose estimation stage, with changing observations at
every iteration.

Figure 1, illustrates the layout of this framework with a
kitchen scene whose 3D geometry and articulation model
are known. Other work [9] has explored learning articu-
lation models through interactive perception, however our
work assumes the model is given in order to focus on the
challenges of pose estimation and tracking which arise once
the model is obtained. The main challenge of both objectives
is partial observation. This partial observation is mainly due
to two factors: occlusion due to objects or agents that are
not part of the kitchen model and the limited viewing angle
of the robot’s on-board sensor. In other words, some objects
in the model are not present in the observations, and vice
versa. This ambiguity in observation demands the notion of
maintenance of distribution over possible hypotheses. Our
prior work [8] shows that belief propagation is suitable for

maintaining and propagating belief for a single observation.
In this work, we propose to extend our efficient belief
propagation method toward tracking large scale articulated
models over continuous observations.
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